FISES Archivos

Foro sobre Fisica Estadistica

FISES@LISTSERV.REDIRIS.ES

Opciones: Vista Forum

Use Monospaced Font
Por defecto enseñar Text Part
Mostrar todas las cabeceras de correo

Mensaje: [<< Primero] [< Prev] [Siguiente >] [Último >>]
Tema: [<< Primero] [< Prev] [Siguiente >] [Último >>]
Autor: [<< Primero] [< Prev] [Siguiente >] [Último >>]

Print Responder
Subject:
Emisor:
Reply To:
Fecha:
Wed, 19 Feb 2020 09:46:42 +0100
Content-Type:
text/plain
Parts/Attachments:
text/plain (20 lines)
Today (February 19) at 15;00 the IFISC Colloquia on Complex Systems seminar series will continue with the seminar "Recurrent Networks of Spiking Neurons: From Biology to Novel Computing Technology" by  Wolfgang Maass (Institute for Theoretical Computer Science, Graz University of Technology). The seminar can be followed by streaming on the web: 

https://ifisc.uib-csic.es/en/events/seminars/recurrent-networks-of-spiking-neurons-from-biology/




Abstract: 

I will review progress in research on networks of spiking neurons during the last 20 years, from reservoir computing to dramatic recent advances in the context of Deep Learning. I will end with a discussion of currently open research problems.

Background and details can be found in:


- A. Subramoney, F. Scherr, and W. Maass. Reservoirs learn to learn. arXiv:1909.07486v1, 2019. https://igi-web.tugraz.at/PDF/250.pdf

- G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory and learning-to-learn in networks of spiking neurons. 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montreal, Canada, 2018. https://igi-web.tugraz.at/PDF/243.pdf

- G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass. A solution to the learning dilemma for recurrent networks of spiking neurons. bioRxiv/org/10.1101/738385v3, December 2019. https://igi-web.tugraz.at/PDF/248.pdf

ATOM RSS1 RSS2